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ABSTRACT

Ischemic stroke, commonly caused by a blood clot obstructing the blood flow within brain vessels, 
requires accurate identification of the clot to determine appropriate treatment. Susceptibility-
weighted imaging (SWI) is an imaging modality that effectively captures clots within the brain. The 
susceptibility vessel sign (SVS) visible on SWI images is crucial for influencing treatment outcomes. 
Traditionally, radiologists manually analyse the SVS, which is both challenging and time-consuming. 
This research aims to build an interactive deep learning (DL)-assisted method for identifying the 
SVS on the SWI in patients with acute ischemic stroke. Sixty-six images with SVS positive were 
used, and 66 images with SVS negative were used, with regions of interest extracted to create the 
training, validation, and test datasets. To increase the number of training samples, data augmentation 
was used. A deep convolutional neural network DenseNet121 was utilised to identify input images 

as either SVS positive or SVS negative. In terms 
of diagnostic performance using 5-fold cross 
validation, the DenseNet121 model achieved 
96.92% sensitivity, 92.31% specificity, and 
94.64% accuracy on the test dataset. These 
findings indicate that the DL methods might be 
advantageous for detecting the SVS on the SWI 
in patients with acute ischemic stroke.

Keywords :  Brain s troke,  DenseNet  model , 
susceptibility vessel sign (SVS), SWI-MRI, transfer 
learning
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INTRODUCTION

Stroke is a severe medical condition that significantly impacts patients, both in terms of 
health and economic burden, especially during post-treatment care. Stroke survivors often 
require extensive and costly rehabilitation. Strokes can be categorised into two types: 
ischemic and hemorrhagic, with ischemic strokes accounting for approximately 85% of 
all cases (Sirsat et al., 2020). Ischemic strokes occur when a blockage obstructs a blood 
vessel in the brain, leading to oxygen deprivation and subsequent cell death. This results 
in functional impairments and delayed recovery. Therefore, rapid restoration of oxygen 
supply and minimisation of brain damage are crucial. In this context, brain imaging plays 
a vital role in diagnosing stroke types and guiding treatment strategies.

Magnetic resonance imaging (MRI) and computed tomography (CT) scans are 
commonly used for stroke diagnosis. Advanced imaging modalities, such as susceptibility-
weighted imaging (SWI) and diffusion-weighted imaging (DWI), provide more precise 
localisation and assessment of the affected brain areas. The SWI, in particular, is highly 
effective in detecting small changes in magnetic properties between blood and tissue, 
enabling the identification of affected veins due to increased deoxygenated blood. Recent 
studies have reinforced the importance of the SWI in detecting thrombi, as the susceptibility 
vessel sign (SVS) has been linked to various stroke parameters, including risk factors and 
thrombus length, which are crucial for treatment planning.

Despite their advantages, existing brain imaging techniques have limitations. The 
perfusion-weighted imaging (PWI) requires contrast agents, which are unsuitable for 
patients with renal insufficiency. The DWI can be time-consuming and impractical 
for certain patients. The computed tomography angiography (CTA) is also prone to 
inaccuracies, such as false negatives due to vessel wall calcification and partial volume 
effects caused by clot thickness (Zhu et al., 2023). These limitations highlight the need for 
more efficient and reliable diagnostic methods.

Recent advancements in clot imaging and artificial intelligence (AI) have significantly 
improved clot detection and prediction. A systematic review of AI-based and conventional 
studies (Dumitriu LaGrange et al., 2023) highlighted several key findings. Deep learning 
(DL) has improved clot detection from non-contrast CT (NCCT) and MRI scans, achieving 
high sensitivity and specificity in large vessel occlusion (LVO) detection. Radiomics-based 
models have been developed for clot segmentation and classification, predicting thrombus 
composition and treatment response using machine learning techniques (Hanning et al., 2021; 
Hofmeister et al., 2020). Automated clot segmentation is a critical advancement, allowing 
rapid 3D reconstruction of clots to assist neuroradiologists in identifying clot location, extent, 
and composition (Mojtahedi et al., 2022). Moreover, AI-based clot detection software, such 
as MethinksLVO, can rapidly predict the LVO in ischemic stroke patients using the NCCT, 
reducing diagnostic time and improving early intervention (Olive-Gadea et al., 2020).
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Automated detection of stroke characteristics, such as clot location and severity, can 
significantly enhance diagnostic efficiency. Currently, the SVS detection heavily relies on 
manual assessment by neurologists, which is time-consuming and subject to variability. The 
deep learning offers a promising solution by automating detection and improving accuracy. 
The DL models have demonstrated near-perfect accuracy in various medical applications 
(Tsochatzidis et al., 2019; Wessels & van der Haar, 2023). Convolutional neural networks 
(CNNs) have also been used to develop automated systems capable of detecting intracranial 
clots on non-contrast CT scans, further enhancing early stroke diagnosis. In the study, a 
Convolutional neural network (CNN) is used to classify input images as either hyperdense 
middle cerebral artery (MCA) sign (HMCAS)-positive or HMCAS-negative. The CNN, 
specifically the Xception architecture, is trained on augmented datasets to identify the 
presence of HMCAS on non-contrast CT scans in patients with acute ischemic stroke. The 
CNN demonstrated high diagnostic performance with 82.9% sensitivity, 89.7% specificity, 
and 86.5% accuracy in leave-one-case-out cross-validation. The study highlights the 
potential of the deep learning methods, like CNNs, to assist in the accurate identification 
of HMCAS, which is crucial for the management and treatment of acute ischemic stroke 
(Shinohara et al., 2020).   

AI techniques, particularly machine learning, have been utilised to develop models 
capable of predicting the origin and composition of thrombi using the MRI data. For instance, 
a study employed gradient echo sequences (GRE) at 3T MRI to train a machine learning 
model that could predict atrial fibrillation (AF) as the thrombus origin (Chung et al., 2019). 
Additionally, the AI has been applied to analyse the SVS on the MRI, which is associated 
with increased red blood cell (RBC) content in the clot (Benson et al., 2021). This analysis 
aids in predicting the clot’s response to treatments such as mechanical thrombectomy.

The AI-based radiomics plays a crucial role by extracting a vast number of quantitative 
features from the MRI scans to develop predictive models. These models can forecast 
treatment outcomes, including the likelihood of successful recanalisation and number of 
thrombectomy passes required (Dumitriu LaGrange et al., 2023). Moreover, the AI can 
integrate information from multiple MRI sequences to provide a comprehensive assessment 
of the thrombus and surrounding vascular anatomy, facilitating more informed treatment 
decisions. Overall, the AI applications in the MRI for clot imaging are transforming the 
field by enabling more accurate and detailed analyses, ultimately improving treatment 
planning and outcomes for stroke patients.

The classification of biomedical images, including stroke clot detection, is a substantial 
challenge due to the limited availability of annotated datasets and high computational cost 
of training deep learning models from scratch. Transfer learning has emerged as an effective 
solution, leveraging pre-trained deep learning models to enhance classification accuracy while 
reducing data requirements (Gunturu et al., 2024). By adapting pre-trained neural networks, 
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such as ResNet, DenseNet, and VGG, to domain-specific biomedical imaging tasks, the 
transfer learning significantly improves model performance while shortening training time.

In stroke detection, the transfer learning allows models trained on large general image 
datasets (e.g., ImageNet) to be fine-tuned on smaller, domain-specific datasets, such as the 
SWI-based clot images. This approach preserves critical features while requiring fewer 
labelled images, making it a powerful tool for detecting clots in the MRI scans. Studies have 
shown that fine-tuning deep convolutional networks on medical images achieves higher 
accuracy than training models from scratch, especially in cases with limited patient data.

This study aims to develop an automated detection system for the SVS identification 
in acute ischemic stroke using the transfer learning. To the best of our knowledge, this 
approach is novel as it integrates the SWI with the DL-based clot detection. The proposed 
system seeks to enhance stroke diagnosis by ensuring high accuracy and efficiency, 
leveraging state-of-the-art DL techniques in medical imaging. By incorporating the latest 
advancements in AI and deep learning, this research contributes to improving stroke 
detection, treatment planning, and overall patient outcomes.

LITERATURE REVIEW

Machine learning (ML) has recently provided a major breakthrough in the medical sector, 
particularly in stroke treatment. Diverse data on medicine can be processed by the ML, 
which, in many cases, identifies patterns and predicts them with astonishing accuracy. The 
first category pertains to stroke prevention, and the second one belongs to stroke diagnosis, 
whereas the third one is for treatment of strokes, while the fourth means outcome prediction 
in case of stroke.

Stroke Prevention

Preventing stroke is necessary to minimise the rates and impact of strokes. The ML 
techniques have demonstrated the potential for policy definition for risk factors and 
prediction of stroke-prone conditions. This section discusses research literature that has 
utilised the ML models to predict familial hypercholesterolemia (FH) and carotid-artery 
atherosclerosis, which are leading causes of stroke among individuals across the globe 
(Myers et al., 2019). The FH is an inherited condition that causes high cholesterol and a risk 
of premature heart disease or stroke. Performing early identification of the FH allows for 
the performance of health, promoting activities that reduce long-term cardiovascular risk. 
A study using the random forest (RF) algorithm is one of its notable examples to predict 
the FH. The method had to optimise the parameters and used a 5-fold cross-validation 
approach for stability assessment with respect to potential model overfitting. The study 
performed parameter optimisation and 5-fold cross-validation to ensure that the model has 
good performance. The precision was 0.85, and the recall was 0.45. Although the high 
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precision suggests solid performance, sub-performances seem to follow in their shadows, 
emphasising a possible area of concern. Hence, more effort is required for this model as it 
appears to be weak with respect to detecting the FH patients. Regardless, it illustrates the 
possibility of the ML to improve the detection of stroke risk-related genetic conditions, 
especially the RF. Carotid-artery atherosclerosis (CA), one of the main risk factors for 
ischemic stroke, represents plaque aggregation in carotids. Early recognition of the CA 
can lead to preventive management and reduce the risk of strokes. In a study (Bento et 
al., 2019), a support vector machine (SVM) was trained to classify individuals with the 
CA based on the MRI images. The SVM model performed with an accuracy of 97.6%, 
which indicated that the use of this algorithm could help in the identification of high-risk 
populations. The combination of the MRI images with the SVM results in a non-invasive 
diagnostic instrument for the CA, which has important clinical implications as it could 
enable early management and stroke prevention.

Stroke Diagnosis

A more accurate classification of the stroke subtypes, particularly the distinction between 
the ischemic and hemorrhagic strokes, which has implications for their treatment strategy, 
could lead to better patient outcomes. In this part, we discuss the results of the previous 
study of dividing stroke patients into subtypes and predicting outcomes using the ML 
techniques. In a stroke subtype classification study (Peixoto & Rebouças Filho, 2018), 
researchers used different ML techniques such as the SVM, Multi-layer Perceptron, and 
Minimal Learning Machines, together with the standard linear discriminant analysis as 
well as the structure co-occurrence matrix (SCM).

The objective was to differentiate between the ischemic and hemorrhagic strokes using 
imaging. Of the evaluated techniques, the SCM achieved the best performance, achieving 
an accuracy of 98%. This high level of accuracy emphasises the capacity of the SCM to 
accurately classify sub-types for all stroke types, thus becoming a valuable tool to help 
health professionals make reliable clinical decisions. For instance, Giacalone et al. (2018) 
predicted the final lesion for stroke patients with acute ischemic using raw perfusion MRI 
images. An SVM model is implemented in this study to measure brain stroke lesion extent 
and location prediction using the MRI data. The SVM model displayed satisfactory high 
accuracy (95%), and it could be predicted with precision. This type of prediction can be 
used to support therapeutic decisions or prognosis assessment.

Stroke Treatment

Stroke rehabilitation is a crucial part of treatment to improve physical and cognitive 
abilities in patients. The ML-based models have been employed to enhance rehabilitation 
exercises, in particular by utilising physiological signals and sensor technology for 
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personalised therapy designing and assessment. This section summarises studies that 
applied the ML techniques to optimise stroke rehabilitation, specifically in the areas of 
physiological stress identification and upper extremity function improvement. A study 
that focussed on trying to adapt the rehabilitation therapy to the physiological signals 
of patients organised this information into relaxed, medium-stressed, and over-stressed 
(Badesa et al., 2014). The physiological signals were classified using a number of the ML 
methods, the most significant results achieved by support vector machines with radial 
basis function (RBF) kernel. The SVM with RBF achieved an accuracy of 91.43%. The 
high accuracy indicates that the SVM with RBF can reliably interpret physiological 
signals, allowing the therapist to adjust the intensity and type of rehabilitation exercise 
in real time, thereby enhancing the effectiveness of the therapy. Another study focussed 
on improving upper extremity function post-rehabilitation, particularly targeting motor-
specific responses. Traditional evaluation approaches, such as self-reporting, are often 
accurate but subjective (Bochniewicz et al., 2017). By using the sensor technology, 
accurate and objective data were collected to assess motor function. The study used the 
RF to classify the rehabilitation outcomes for control and stroke subjects. From the study, 
while the RF model was highly effective in distinguishing motor responses in healthy 
individuals, it faced challenges with the more variable and complex data from stroke 
patients. However, the sensor data and RF classification have greatly advanced beyond 
the traditional self-report method, whereby a more objective and detailed evaluation of 
rehabilitation progress may be obtained. Patients with stroke are frequently treated by 
thrombolysis, thrombectomy, or both and experience a highly variable outcome. Such 
fine-grained prognostication can help guide the choice of treatments and ultimately 
improve patient care. The ML techniques have been used with the clinical and imaging 
data to predict treatment response. In this section, studies are considered in predicting 
treatment outcomes using the ML and DL methods, especially focussing on the utilisation 
of the CTA images and diffusion tensor imaging (DTI). A study investigated the use 
of the DL for predicting functional outcomes after treatment in stroke from acquired 
computed tomography angiograms (Hilbert et al., 2019). The research employed the 
Resnet algorithm in order to analyse the CTA images and predict patient outcomes. 
This method was compared to traditional radiological biomarkers that were manually 
annotated by domain experts, who can introduce inter-observer variability. On 3 out of 
4 cross-validation folds for functional outcomes, the model achieved an average AUC 
value of 0.71. The study results suggest that, compared with traditional radiological 
biomarkers, the DL model can more accurately predict outcomes and thus offers hope in 
improving the administration of stroke treatment. A further study using the ML explored 
the link between the DTI metrics and functional outcomes in a cohort of patients post-
stroke. The axial diffusivity map as a key parameter was the central object of the study. 
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These maps were analysed, and the results were predicted using an SVM classifier. The 
SVM classifier had the highest accuracy rate, 82.8%, among imaging criteria in this 
current study. This result attests to the utility of the DTI metrics and SVM for forecasting 
outcomes, suggesting an effective approach used for assessing rehabilitation strategies.

Stroke Outcomes Prediction

The thrombus composition and stroke treatment response outcome may be influenced 
by the thrombotic material within a clot as well as its responsiveness to treatment. 
Radiomics of the clot, which examines connections between the thrombus composition 
and treatment response through sophisticated imaging techniques, is in increasing focus. 
The ML algorithms have demonstrated the potential to predict the composition of the 
thrombus and recognise specific stroke-related conditions. In this section, we summarise 
some representative studies that have used the ML for clot imaging in stroke treatment. 
Another was targeting prediction on the thrombus composition of clots using radiomics 
features extracted from the thrombi images (Hanning et al., 2021). The investigators 
applied nested five-fold cross-validation and used random-forest algorithms to classify 
the thrombus composition. At the end of this process, a receiver operating characteristic 
(ROC) curve value of 0.83 was obtained for red blood cell (RBC)-rich thrombi and another 
0.84 for fibrin-rich thrombi by the random forest model, respectively. The high ROC value 
showed the random forest model to have differentiation power between the RBC-rich and 
fibrin-thrombi. Therefore, accurate prediction of the thrombus composition can help guide 
appropriate treatment strategies. 

The identification of the LVO on the NCCT plays a key role in the decision-making 
process to identify which is going to be the right intervention for stroke patients. The 
proprietary MethinkLVO software created to aid in this identification had a sensitivity 
of 0.83 and specificity of 0.71 (Olive-Gadea et al., 2020). High sensitivity (92.7%) and 
specificity (99.8%) imply that the software is good at detecting the LVO to inform clinical 
decisions accurately with sufficiently low false discovery rate. A stunning result predicting 
the hyperdense middle cerebral artery (HMCA) in the NCCT showed the sensitivity and 
specificity were 0.83 (Xception model) and shown to be effective at HMCA identification, 
aiding in rapid diagnosis and intervention for acute stroke cases (Shinohara et al., 2020).

The SVS in susceptibility-weighted imaging has been linked with higher amounts of 
the RBC content within thrombi (Phuyal et al., 2024). A study by Tang et al. (2021) found 
clots without the SVS were fibrin-rich and less responsive to simple aspiration, requiring 
mechanical thrombolysis instead. In patients with the LVO treated with intravenous tissue 
plasminogen activator (TPA) alone, the presence of the SVS has similarly been identified 
as a predictor for better outcome thresholds (Tang et al., 2021). Although the SVS as a clot 
composition marker is extremely important, until now, no study has ever focussed on the 
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automatic detection of this sign based on the ML or DL. These gaps automatically denote 
an interesting direction in further development.

MATERIALS AND METHODS

This study comprises three main experimental phases. Phase 1 evaluates different pre-trained 
deep learning models using the Shinohara’s method (Shinohara et al., 2020) to determine 
the best-performing architecture for the SVS detection, incorporating data augmentation. 
Phase 2 optimises the selected model by analysing the effects of augmentation strategies, 
learning rate, training epochs, resizing methods, and filtering techniques. Finally, Phase 
3 validates the optimal configuration using the 5-fold cross-validation to ensure the 
generalisability of the developed model.

Experimental Setup

Phase 1: Deep Learning Model Selection

Step 1: Pre-Trained Models Evaluated. In this study, six prominent deep learning 
architectures were evaluated to identify the most effective model for the susceptibility-
weighted Imaging (SWI) MRI scan analysis. The selected architectures are:

• Xception: This architecture utilises depthwise separable convolutions, which 
significantly reduce the number of parameters without compromising performance. 
The Xception has demonstrated superior accuracy in various image classification 
tasks, making it a strong candidate for medical image analysis (Faiz & Iqbal, 2022).

• ResNet50: Known for its residual learning framework, the ResNet50 addresses 
the vanishing gradient problem by incorporating skip connections. This design 
enables the training of deeper networks and has shown robust performance across 
diverse applications (Shen & Liu, 2017). 

• DenseNet121: The DenseNet connects each layer to every other layer in a 
feed-forward fashion, promoting feature reuse and efficient gradient flow. This 
connectivity pattern leads to improved learning efficiency and has been effective 
in various computer vision tasks. 

• MobileNet: Designed for mobile and embedded vision applications, the MobileNet 
employs depthwise separable convolutions to reduce computational complexity. 
Despite its lightweight nature, it achieves performance comparable to larger models, 
making it suitable for resource-constrained environments (Chen & Su, 2018). 

• EfficientNetB0: The EfficientNet introduces a compound scaling method that 
uniformly scales network depth, width, and resolution. This balanced approach 
results in superior accuracy with fewer parameters, offering an efficient solution 
for image classification tasks (Utami et al., 2022). 
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• ConvNeXtLarge: As a modernised architecture, the ConvNeXtLarge builds upon 
standard convolutional networks by incorporating design elements from vision 
transformers. This integration aims to enhance performance while maintaining 
computational efficiency, making it a compelling choice for advanced image 
analysis (Hou et al., 2024). 

Each of these architectures brings unique strengths to the table, and their performance 
was systematically evaluated to determine the most suitable model for our specific 
application.

Step 2: Implementation of the Method Inspired by Shinohara. Each pre-trained model 
was used as a feature extractor, replacing the final classification layers with a customised 
classifier. The classification head was designed as follows: 

• Global average pooling layer
• Batch normalisation layer
• Dropout layer (0.3)
• Fully connected dense layer with sigmoid activation for binary classification

Step 3: Dataset and Preprocessing. All images with positive SVS are annotated by a 
neuroradiologist from Hospital Sultan Abdul Aziz Shah (HSAAS), Faculty of Medical and 
Health Science, Universiti Putra Malaysia (UPM), Malaysia. Data obfuscation, labelling 
and validation were done using padimedical system. The dataset comprises nine patients 
who exhibit the susceptibility vessel sign in the SWI MRI scans. Each SWI MRI scan 
contains 60 2D image slices. However, not all images contain positive signs of the SVS. 
The number of slices for each patient consisting of the SVS positive also varies. The total 
number of the SVS-positive images for this experiment is 66.  For the training set taken 
from five patients, 30 images with the SVS positive and 30 images with the SVS negative 
are used. The validation set includes 19 images with the SVS positive and 19 images with 
the SVS negative, which is from two patients, while the testing dataset consists of 17 images 
with the SVS positive and 17 images with the SVS negative sign, which were obtained 
from another two patients. The images and data obtained initially are in the DICOM format, 
which is then converted into the JPEG format (672 × 672 pixels). All images with the 
positive SVS are taken into the dataset. Each full brain image with a SVS positive is cropped 
into various sizes of squares depending on the area of the SVS, ensuring that the information 
on the SVS is maximised in the background as shown in Figure 1 (the shape of the cropped 
area is square and being used as an input of classification), for the SVS negative is taken 
from the same image but in different position of the SVS positive. If the SVS positive is on 
the right side of the brain image, the SVS negative is taken from the left side of the brain, 
as shown in Figure 1. Each dataset (training, validation, and testing) are then organised 
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into separate folders, which are further subdivided into images of the SVS positive and 
negative. Each of the images was resized to 240 × 240 using bilinear interpolation. Then, 
the filtering method was applied to reduce the noise. Data augmentation is employed to 
enable the model to understand various sets of features and expand the dataset size, thus 
mitigating overfitting. Each training set is augmented using random affine transformation, 
including shearing and rotation. The details of the image augmentation parameters are as 
follows: rotation within a range of 0 to 90 degrees in a step of 15 degrees, shearing at 0.2, 
zooming at 0.2, horizontal flipping, and vertical flipping. From this augmentation method, 
300 augmented images were obtained for the training dataset.

Step 4: Model Training Configuration. For this study, each of the pre-trained models used 
this parameter as shown below:

• Optimiser: Adam with a fixed learning rate of 0.00001
• Batch size: 32
• 50 training epochs
• Loss function: Binary cross-entropy

Step 5: Evaluation Metrics and Model Selection. In this study, a few parameters are used 
to measure the efficiency and effectiveness of the classification model, using accuracy, 
sensitivity, and specificity derived from the confusion matrix. The calculation of each 
performance metric is as follows:

Accuracy = TP +TN
TP +FP +TN +FN

          [1] 

 

 Sensitivity = TP
TP +FN

          [2] 

 

Specificity =  TN
TN +FP

          [3] 

 

where, TP is tr 

    [1]

Figure 1. This is one of the image slices taken from acute ischemic stroke patients using the MRI modality 
with the SVS positive. This image is cropped into the negative SVS region and the positive SVS region 
that is used during the experiment
Note. MRI = Magnetic resonance imaging; SVS = Susceptibility vessel sign

 

 

 

 

 

 

Figure 1. This is one of the image slices taken from acute ischemic stroke patients using the MRI 
modality with the SVS positive. This image is cropped into the negative SVS region and the positive 
SVS  

SVS Negative SVS Positive 
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Accuracy = TP +TN

TP +FP +TN +FN
          [1] 

 

 Sensitivity = TP
TP +FN

          [2] 

 

Specificity =  TN
TN +FP

          [3] 

 

where, TP is tr 

    [2]

Accuracy = TP +TN
TP +FP +TN +FN

          [1] 

 

 Sensitivity = TP
TP +FN

          [2] 

 

Specificity =  TN
TN +FP

          [3] 

 

where, TP is tr 

    [3]

where, TP is true positive, TN is true negative, FP is false positive, and FN is false 
negative.The pre-trained model achieving the highest F1-score was selected for further 
experimentation in Phase 2.

Phase 2: Manual Hyperparameter Tuning of the Best Pre-Trained Model

After identifying the best-performing pre-trained model in Phase 1, an optimisation 
experiment was conducted using a manual hyperparameter tuning to examine the impact 
of augmentation strategies, learning rates, training epochs, resizing methods, and filtering 
techniques on the classification performance.

Experimental Configurations. The selected model was fine-tuned under different 
experimental conditions:

Step 1: Data Augmentation Strategies. The study analysed the impact of data augmentation 
on model performance by comparing two different training approaches:

1. With Augmentation – Various augmentation techniques were applied to enhance 
model generalisation and robustness. The applied transformations included:
• Rotation: 0° to 90° with 15° step
• Shear: 0.2
• Zoom: 0.2
• Horizontal and vertical flipping

These augmentations were consistent with those used in Phase 1 of the study.

2. Without Augmentation – The model was trained using the original dataset without 
any transformations, serving as a baseline for comparison.

The impact of augmentation was assessed based on model accuracy, generalisation 
capability, and sensitivity to variations in the input data.

Step 2: Learning Rate Variations (Manually Tuned). The study explored the impact of 
different manually tuned learning rates on the model performance. The following learning 
rate variations were tested:

• 10-3 (0.001) - A relatively high learning rate, allowing the model to converge 
quickly but with a potential risk of overshooting the optimal solution.

• 10-4 (0.0001) - A moderate learning rate, balancing convergence speed and stability.
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• 10-6 (0.000001) - A very small learning rate, ensuring fine adjustments to the 
model’s weight but potentially leading to slow convergence.

Step 3: Number of Training Epochs (Manually Tuned). The study investigated the effect 
of different training durations on the model performance by varying the number of training 
epochs. The following configurations were tested:

• 25 epochs – A shorter training duration to observe the model’s initial learning 
progress and prevent overfitting.

• 50 epochs – A balanced approach, allowing the model to learn effectively while 
monitoring for potential overfitting.

• 70 epochs – A longer training duration to evaluate whether extended learning 
improves performance or leads to overfitting.

Early stopping was implemented based on the validation accuracy to determine the 
optimal number of epochs for achieving the best generalisation performance on test data.

Step 4: Resizing Methods. The study evaluated different image resizing techniques to 
determine their impact on model performance. The following interpolation methods were 
considered:

• Bilinear interpolation – Computes the pixel value using a weighted average of the 
four nearest neighbouring pixels, resulting in smoother images.

• Bicubic interpolation – Uses a more complex weighted average of 16 neighbouring 
pixels, producing sharper and higher-quality resized images.

• Nearest neighbour interpolation – Assigns the value of the nearest pixel without 
averaging, leading to a blocky appearance but preserving edges.

Each method was tested to assess its influence on image quality and the model’s ability 
to detect the SVS effectively.

Step 5: Filtering Techniques. The study explored different image filtering techniques 
to assess their impact on model performance. The following filtering approaches were 
evaluated:

• No filtering – The raw images were used without any pre-processing.
• Median filter – Applied to reduce noise while preserving edges.
• Gaussian filter – Used for smoothing the images by reducing high-frequency noise.
• Combination of median and Gaussian filtering – Both techniques were applied 

sequentially to enhance image quality.

Each filtering method was analysed to determine its effectiveness in improving the 
model accuracy and generalisation.
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Training and Evaluation Process. The Adam optimiser was employed for backpropagation 
across various manually selected learning rates to optimise the model’s performance. 
Training was conducted for a range of epochs, with early stopping implemented to 
monitor validation accuracy and prevent overfitting. The best-performing configuration 
was identified based on the overall accuracy and generalisation performance evaluated on 
the test dataset.

Selection of the Optimal Configuration. After evaluating all experimental configurations, 
the optimal combination of augmentation techniques, image resizing, filtering methods, 
learning rate, and training epochs were selected based on the performance metrics. This 
final validated model was then subjected to 5-fold cross-validation in Phase 3 to ensure 
its robustness and generalisation capability. 

Phase 3: 5-Fold Cross-Validation on the Optimal Configuration

Once the best model configuration was established, the 5-Fold Cross-validation was 
employed to validate its generalisability. The 5-Fold Cross-validation Strategy was 
implemented to evaluate the model’s performance robustly. The dataset was randomly 
divided into five equal folds. In each iteration, one-fold was designated as the validation 
set, while the remaining four folds were used for training the model. This process was 
repeated five times, with each fold serving as the validation set exactly once. The final 
performance of the model was determined by calculating the mean performance across all 
five folds, providing a more reliable assessment of its generalisation capability.

RESULTS AND DISCUSSION

In this study, the performance of the multiple deep learning models for the detection of the 
SVS in the MRI scans was evaluated using the method proposed by Shinohara et al. (2020). 
The models assessed include the Xception, ResNet50, ConvNetXtXLarge, EfficientNet, 
MobileNet, and DenseNet. The performance of these models was analysed based on key 
classification metrics: accuracy, sensitivity, and specificity.

The results based on Table 1 indicate that the Xception achieved an accuracy of 
52.94%, with a sensitivity of 1.00 and specificity of only 0.05. Similarly, the ResNet50, 
ConvNetXtXLarge, and EfficientNet all reported an accuracy of 50.00%, a perfect 
sensitivity score of 1.00, but a specificity of 0.00. This pattern suggests that these models 
overwhelmingly classified images as positive cases (SVS present), failing to correctly 
identify negative cases. Consequently, their high sensitivity came at the expense of 
specificity, making them ineffective for reliable classification in clinical settings. The 
DenseNet is better than the ResNet because the Densenet has the capability of feature 
reuse and better gradient flow (Padmakala & Uma Maheswari, 2024).
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The MobileNet demonstrated a relatively improved performance, achieving an accuracy 
of 55.88%, sensitivity of 0.7647, and specificity of 0.3529. Likewise, the DenseNet 
outperformed the other models by achieving the highest accuracy of 58.82%, with a 
sensitivity of 0.7647, and a specificity of 0.4818. These models showed a better balance 
between sensitivity and specificity, indicating that they were more capable of distinguishing 
between positive and negative cases than the other models. The Densenet model also shows 
outperformed in brain tumour detection because it is capable of handling small datasets 
compared to other models (Thimma Reddy & Balaram, 2024). The Densenet pre-trained 
model has also shown improvement in accuracy in the fundus medical images (Xu et al., 
2018), breast cancer detection (Hamdy et al., 2021), chest disease (Iswahyudi et al., 2024), 
and others.

The results presented in Table 1 indicate that the Xception achieved an accuracy of 
52.94%, with a sensitivity of 1.00 but a specificity of only 0.05. Similarly, the ResNet50, 
ConvNeXt-XLarge, and EfficientNet all reported an accuracy of 50.00%, a perfect 
sensitivity score of 1.00, but a specificity of 0.00. This pattern suggests that these models 
overwhelmingly classified images as positive cases (SVS present), failing to correctly 
identify negative cases. Consequently, their high sensitivity came at the expense of 
specificity, making them ineffective for reliable classification in clinical settings. The 
DenseNet outperforms the ResNet due to its ability to facilitate feature reuse and improve 
gradient flow (Padmakala & Uma Maheswari, 2024).

The MobileNet demonstrated relatively improved performance, achieving an accuracy 
of 55.88%, a sensitivity of 0.7647, and specificity of 0.3529. Likewise, the DenseNet 
outperformed the other models by achieving the highest accuracy of 58.82%, with a 
sensitivity of 0.7647, and specificity of 0.4818. These models exhibited a better balance 
between sensitivity and specificity, indicating that they were more effective in distinguishing 
between the positive and negative cases compared to the other models.

After that, in Phase 2, several experiments were conducted to compare the performance 
of the models with and without data augmentation, as well as to evaluate different resizing, 

Table 1
Comparing performance metrics of the transfer learning models in the test dataset

Model Accuracy Sensitivity Specificity
Xception 0.5294 1.00 0.05

ResNet 50 0.5000 1.00 0.00
ConvNetXtXLarge 0.5000 1.00 0.00

EfficientNetB0 0.5000 1.00 0.00
MobileNet 0.5588 0.7647 0.3529

DenseNet121 0.5882 0.7647 0.4818

Note. The bold data = The best results
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filtering methods, and other transfer learning models, as mentioned in Phase 2 in the 
methodology section. In Table 2, the results for without data augmentation are presented, 
comparing various learning rates and numbers of epochs. Our findings indicate that the best 
performance was achieved with a learning rate of 0.001 and 50 epochs, yielding an accuracy 
of 0.8235, with a specificity of 0.8235, a sensitivity of 0.8235, and a F1-score of 0.8235.

Then, performance improvement was observed after using the data augmentation 
method. As shown in Table 3, the highest performance in that case was achieved with a 
learning rate of 0.001 and 50 epochs, yielding an accuracy of 0.8824, with a specificity of 
0.7647, sensitivity of 1.00, and F1-score of 0.8867.

Next, various resizing methods were evaluated using a learning rate of 0.001 and 50 
epochs. The results in Table 4 indicate that bicubic interpolation achieved the highest 
accuracy of 0.8235 among the resizing methods. Nevertheless, when compared with the 
results from Table 3 (without any resizing), the performance without resizing was superior.

Furthermore, different filtering methods were compared. Table 5 shows that the best 
results were obtained without any filtering, achieving an accuracy of 0.7647, while the 
combination of the median and Gaussian filtering produced the lowest accuracy of 0.5. 

In conclusion, the best model is the DenseNet121 model with data augmentation, with 
a learning rate of 0.001 and a number of epochs of 50. The DenseNet121 model obtained 
an average accuracy of 0.9464 when evaluated using the 5-Fold Cross-validation, as shown 
in Table 6. It also showed excellent sensitivity, specificity, and F1-score. The strong F1-
score suggests that the model maintains a good balance between sensitivity and specificity, 
making it highly suitable for the SVS detection, which is supported by a value of a high 
AUC of 0.9728, shown in Figure 2.

Table 2
Comparing performance metrics of the DenseNet121 Model without augmentation with different learning 
rates (0.000001,0.00001, 0.001) and several epochs (25,50,70) in the test dataset

Learning rate Epoch Accuracy Sensitivity Specificity F1-Score
0.000001 25 0.4706 0.8824 0.0588 0.625
0.000001 50 0.4118 0.1176 0.7059 0.1667
0.000001 70 0.5 0.1176 0.8824 0.1905
0.0001 25 0.6765 0.3529 1 0.5217
0.0001 50 0.5882 0.5882 0.5882 0.5882
0.0001 70 0.4412 0.1765 0.7059 0.24
0.001 25 0.8235 0.8235 0.8235 0.8235
0.001 50 0.6765 0.8824 0.4706 0.7317
0.001 70 0.7059 0.7647 0.6471 0.7222

0.000001 25 0.4706 0.8824 0.0588 0.625

Note. The bold data = The best results
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Table 3
Comparing performance metrics of the DenseNet121 Model with augmentation with different learning rates 
(0.000001,0.00001, 0.001) and a number of epochs (25,50,70) in the test dataset

Learning rate Epoch Accuracy Sensitivity Specificity F1-score
0.000001 25 0.3529 0.4074 0.6471 0.5
0.000001 50 0.4706 0.2353 0.7059 0.3077
0.000001 70 0.5882 0.8 0.2353 0.3636
0.0001 25 0.7353 0.8235 0.6471 0.767
0.0001 50 0.6176 0.3529 0.8824 0.48
0.0001 70 0.7647 0.6471 0.8824 0.7333
0.001 25 0.7941 0.8235 0.7647 0.8
0.001 50 0.8824 0.7647 1 0.8667
0.001 70 0.7647 0.7059 0.8235 0.75

Note. The bold data = The best results

Table 4
Comparing performance metrics of the DenseNet Model with augmentation among different resizing methods 
(bilinear, nearest, and bicubic) with a learning rate of 0.001 and the number of epochs of 50 in the test dataset

Resize method Epoch Accuracy Sensitivity Specificity F1-score
Bilinear 50 0.7353 0.7647 0.7059 0.7429
Nearest 50 0.7059 0.6471 0.7647 0.6875
Bicubic 50 0.8235 0.9412 0.7059 0.8421

Note. The bold data = The best results

Table 5
Comparing performance metrics of the DenseNet121 Model with augmentation among different filtering 
methods (non-filtering, median, Gaussian, and median + Gaussian) with a learning rate of 0.001 and a number 
of epochs of 70 in the test dataset

Filtering method Resize Accuracy Sensitivity Specificity F1-score
None None 0.7647 0.7647 0.7647 0.7647

Gaussian None 0.7059 0.7647 0.6471 0.7222
Median None 0.7353 0.7059 0.7647 0.7273

Both None 0.5 0 1 0

Note. The bold data = The best results

Table 6
Cross-validation using 5-fold cross-validation for the best model, the DenseNet121 with data augmentation, 
the learning rate is 0.001, and the number of epochs is 50

Transfer learning model Avg. accuracy Avg. sensitivity Avg. specificity Avg. F1-score
DenseNet 0.9464 ± .0393 0.9692 ± 0.0377 0.9231 ± .0487 0.9481 ± .0383
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CONCLUSION

This study presents the development of a deep learning model for the interactive 
identification of the SVS in brain stroke patients using the MRI data. A pre-trained 
DenseNet121 model was fine-tuned with augmented samples and trained using a learning 
rate of 0.001 for 50 epochs. Experimental results indicate that the data augmentation 
significantly improved the model performance, whereas image filtering techniques (e.g., 
median and Gaussian filters) did not yield further enhancement. These findings highlight 
the effectiveness of the augmentation in enhancing the SVS detection accuracy.

A comparative analysis of the ResNet50 and ConvNeXtXLarge revealed a significant 
discrepancy in classification performance. Both models achieved 100% sensitivity but 
0% specificity, meaning they correctly identified all the SVS-positive cases but failed to 
classify the SVS-negative cases accurately. This suggests severe overfitting, where the 
models memorised features from the SVS-positive class rather than learning generalisable 
patterns. Several factors may have contributed to this issue, including the small dataset 
size, the complexity of the models, and insufficient regularisation.

The AUC score further confirms the model’s strong classification ability. The 
DenseNet121 model achieved an AUC of 0.9728 (Figure 1), indicating excellent 
discriminative performance. However, despite this high AUC value, a meaningful 
comparison with human radiologists and existing AI-based stroke detection tools is 

Figure 2. Receiver operating characteristic (ROC) curve in the test dataset using the best model-DenseNet121
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necessary to assess its clinical relevance. Additionally, external validation on independent 
datasets is required to ensure generalisability and robustness in real-world applications.

Furthermore, the DenseNet has also shown superior performance in brain tumour 
detection, as it is capable of handling small datasets more effectively than other models 
(Thimma Reddy & Balaram, 2024). Additionally, the DenseNet pre-trained model has 
demonstrated improved accuracy in various medical imaging applications, including fundus 
images (Xu et al., 2018), breast cancer detection (Hamdy et al., 2021), and chest disease 
diagnosis (Iswahyudi et al., 2024), among others.

Our study addresses the challenges posed by limited radiology data through employing 
the transfer learning, image augmentation, and various pre-processing techniques. 
Nevertheless, some limitations must be considered. The samples were extracted from a 
small region and manually delineated, whereas an automatic approach would be preferable. 
Additionally, the limited dataset size and potential data variability or class imbalance may 
have contributed to overfitting.

For future work, our approach is planned to be refined by developing an automatic 
segmentation method, improving accuracy through hyperparameter tuning, and exploring 
alternative strategies to enhance the model’s robustness and generalisation performance. 
Furthermore, a comparative study with radiologists and existing AI models will be 
conducted to evaluate its clinical applicability and real-world effectiveness.
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